Module title	Imaging for the Life Sciences
Code	CO4
Degree Programme	Master of Science in Life Sciences
Group	Computation
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Dr. Andreas Hock
Coordinator	Phone : +41 (0)58 934 50 99
	Email: andreas.hock@zhaw.ch
	Address: ZHAW Life Sciences und Facility Management, Grüental, 8820 Wädenswil
Lecturers	Dr. Andreas Hock, ZHAW
	Dr. Norman Juchler, ZHAW
	Prof. Dr. Steffi Lehmann, ZHAW
	Dr. Robert Vorburger, ZHAW
	Dr. Luis Dean Ben, ETH Zurich
Entry requirements	Basic knowledge of biology
	Bachelor level of analysis, linear algebra, statistics and signal processing
	Basic Python programming skills
	An installed and functional Python programming environment. Installation
	instructions will be made available on the MSLS Community Centre. Students are
	expected to verify their setup before the first lecture.
	If you are unsure whether your prior knowledge is sufficient, you can test it with the
	quiz on this page: https://mslscommunitycentre.ch/course/view.php?id=140
Learning outcomes	After completing the module, students will be able to:
and competences	Understand the techniques of different imaging modalities used in medicine and
	the life sciences, e.g. ultra-sound, X-rays, CT, MRI, SPECT, PET etc.
	To interpret typical image data from the life sciences and (bio-)medicine
	Perform basic image processing tasks, such as de-noising, morphological filtering,
	segmentation, either programmatically in Python or with tools like ImageJ/Fiji.
Module contents	Imaging methods and applications to different fields in the life sciences
	Image processing techniques & workflows
	Student projects
	Excursions
Teaching / learning	Lectures, accompanied with practical work
methods	
Assessment of	1. Project work (50%)
learning outcome	2. Written exam (closed-book) (50%)
Format	7-weeks
Timing of the	Spring semester, CW 16-22
module	
Venue	Blended learning format. Presence sequences take place in Olten
Bibliography	-
Language	English

Links to other	-
modules	
Comments	-
Last Update	23.07.2025