Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Design and Analysis of Experiments
Code	D2
Degree Programme	Master of Science in Life Sciences
Workload	3 ECTS (90 student working hours)
	- Asynchronous and synchronous distance learning, decentralized teaching: 32 h
	- Self-study: 58 h (10 h self-study before module starts)
Module	Name: Lorenzo Tanadini
Coordinator	Phone : +41 (0)31 910 21 20
	Email: lorenzo.tanadini@bfh.ch
	Address: Berner Fachhochschule, HAFL, Länggasse 85, 3052 Zollikofen
Lecturers	Lorenzo Tanadini, BFH
Entry requirements	Attending the module "Handling and Visualizing Data" is required. Prior to this module,
	additional preparatory materials will be made available to facilitate student
	preparation for the module. Students are advised to start five weeks before the
	module with the preparatory work.
Learning outcomes	After completing the module, students will be able to:
and competences	• apply the basics of statistical inference (estimation, testing, confidence regions) in
	the course setting,
	• identify common and important types of experimental designs with respective
	advantages and disadvantages,
	choose an appropriate design in a given research setting,
	• perform a correct statistical analysis of different types of designs, including
	unbalanced data sets,
	perform post hoc tests,
	 interpret the model and report the findings scientifically.
Module contents	• Introduction to statistical inference (population and sample, statistical hypothesis
	testing, confidence regions)
	General principles of experimental design (blocking, randomization)
	Important particular experimental designs (e.g. fully randomized designs,
	randomized block designs; incomplete designs; factorial designs, fractional
	factorial designs; split-plot designs); when to use which design
	Statistical analysis of all the particular designs that were introduced (including
	interpretation of e.g. block effects or interaction effects, adapted to the design)
	Post hoc tests (also for ordinal factors) e.g. to compare subsets of treatments to
	each other
	• Interpretation and visualization of the results; scientific reporting of the results,
	back-translation from statistical terminology to the original research question
Teaching / learning	In the weeks before module start, students are expected to do preparatory work to
methods	prepare themselves for the module: preparations for the statistical topics as well as a
	minor brush-up of the course software R.
	The students receive preparatory as well as follow-up <u>self-study</u> work for each course
	day (regardless of whether it is a central or local day). The self-study consists e.g. of
	preparatory reading/videos, follow up exercises, examining case studies, etc.

	<u>Central</u> teaching is offered in a distance learning mode consisting of a combination of
	asynchronous activities (e.g. script, videos) and live online sessions.
	Local coaching consists of physical presence sessions where students actively solve
	exercises together with the local coaches. These exercises are meant to deepen the
	understanding of the material, give an opportunity to practice, provide extensions etc.
Assessment of	Final written individual exam (open book, using individual laptop computers to run
learning outcome	statistical analyses using the course software) (100%)
Format	7-weeks
Timing of the	For ZHAW and FHNW: Autumn semester, CW 45-51
module	For BFH and HES-SO: Spring semester, CW 15-21
Venue	Distance learning (central teaching) and in-presence teaching at respective school
	(local coaching)
Bibliography	Material will be provided on Moodle.
Language	English
Links to other	This module builds on module D1 "Handling and Visualising Data" and complements
modules	the module D3 "Modelling and Exploration of Multivariate Data".
Comments	Material treated during local teaching is relevant for the exam.
	Students have to make sure that an updated version of R is installed. Details will be
	communicated in advance.
Last Update	16.09.2021