Master in Life Sciences

Module title	Industrial Chemical Process Safety						
Code	C6						
Degree Programme	Master of Science in Life Sciences						
Group	Chemistry						
Workload	3 ECTS (90 student working hours: 32 h contact (= 42 lessons), 58 h self-study)						
Module	Name: Dr. Ludovic Gremaud						
Coordinator	Phone: +41 26 429 68 06						
	Email: <u>ludovic.gremaud@hefr.ch</u>						
	Address: HEIA-FR, Chemistry Department, Bd. Pérolles 80, 1700 Fribourg						
Lecturers	Dr. Ludovic Gremaud, HEIA-FR						
	Dr. Véronique Breguet-Mercier, HEIA-FR						
	Dr. Pierre Brodard, HEIA-FR						
	Dr. Roger Marti, HEIA-FR						
	Dr. Andreas Zogg, FHNW						
	Guest lecturers, experts from the industry						
Entry requirements	Chemistry at Bachelor of science level						
	Knowledge requirement:						
	Physical chemistry: thermodynamics & kinetics, thermal analysis (DSC), basic						
	concepts of thermal safety (criticality classes)						
	• Industrial chemistry: Industrial unit operation (filtration, distillation, drying),						
	process scale-up & safety, EHS						
	Way to support/encourage students to reach it:						
	• Preparatory reading and exercises, including a self-test for students to check the						
	actual understanding of the topics and to give them the opportunity to have the skil						
	and knowledge to be ready for the summer school						
Learning outcomes	After completing the module, students will be able to:						
and competences	Appreciate how to give support to process development, operational excellence and						
	manufacturing activities with DynoChem & Reaction Lab tools as well as MATLAB						
	Understand the role and importance of safety valves within de production industries						
	as well as the pathway to design it						
	• Apprehend how to develop, interpret and apply EHS concept including compilation of						
	regulatory relevant documents						
	Put into practice appropriate process safety tools, master hazardous chemistry as well						
	as assess and explain results for process review						
Module contents	• Understanding of the interconnected nature of process safety and design of						
	production unit						
	• Evaluate the thermal safety risk of various chemical processes, based on Case Studies						
	• Concept and approach for green process development of hazardous reactions,						
	operational excellence and engineering activities						
	Role and responsibilities towards Environmental, Health & Safety legal right						
	Integration of specific requirements for Process R&D & Production activities in a						
	Highly Potent API environment						

A cooperation between BFH, FHNW, HES-SO, ZFH

Teaching / learning	Basic concepts and theoretical background by lecturers								
methods	Inputs by guest lectures from industry and academia								
	• Exercises and analysis of case studies coming from the industries and academia								
	 KiloLab & Pilot Plan visits with hands demonstration and/or exercises 								
	 Questions & Answers session (individual and group support) 								
Assessment of	1. Entry exam prior the summer school, individual, open book (20%)								
learning outcome	2. Resolve case studies, individually and in group (3-4), open book (40%)								
	3. Bibliographic report based on a scientific publication/chapter book, submission								
	deadline 7 days after the summer school, groups of min. 2 people, open book (40%)								
Format	Summer school								
Timing of the	Spring semester, CW26								
module									
	Day of the block week	<1	1	2	3	4	5	>5	
	Contact teaching		8	9	8	9	8		
	(lessons)	24	2	2	2	2	0	24	
	Self-study (hours)	24	3	2	3	2	0	24	
Venue	Mix of online and on-site lectures (in Fribourg)								
Bibliography	Ullmann's Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007								
	 Dynochem Resources. Locate to: <u>https://www.scale-up.com/</u> 								
	 Techniques de l'ingénieur. Locate to: <u>https://www.techniques-ingenieur.fr/</u> 								
	Ignatowiz, E. (1997). Chemietechnik. Haan-Gruiten: Verlag Europa-Lehrmittel								
	• Stoessel, F. (2008). Thermal Safety of Chemical Processes. Weinheim: WILEY-VCH								
	 Legal texts regarding chemistry (chapter 813). Locate to: 								
	https://www.admin.ch/opc/fr/classified-compilation/81.html								
	Lectures notes (PDF) and additional material (exercises) will be delivered in addition								
	before and during the mod	lule.							
Language	English								
Links to other	Coordination with modules:								
modules	C4, Green Chemistry								
	C5, Chemistry and Energy								
Comments	-								
Last Update	13.09.2021								