Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Tissue Engineering for Drug Discovery
Code	BP6
Degree Programme	Master of Science in Life Sciences
Group	Bio/Pharma
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Dr. Michael Raghunath
Coordinator	Phone: +41 (0)58 934 55 18
	Email: ragh@zhaw.ch
	Address: ZHAW Life Sciences and Facility Management, Einsiedlerstrasse 31, 8820
	Wädenswil
Lecturers	Dr. Michael Raghunath, ZHAW
	Dr. Laura Suter-Dick, FHNW
	Dr. Markus Rimann, ZHAW
	• N.N., ZHAW
	Guest lecturers
Entry requirements	Bachelor Degree in Life Sciences (Biotechnology, Bioanalytics, Pharmatechnology,
	Chemistry with specialization in Cell Biology or Tissue Engineering, Biomaterials)
	Key words:
	cell surface receptors, signal transduction,
	Extracellular matrix and cell-matrix interactions
	Biomaterials, assembly of (bio)polymers
	Three dimensional cell culture, stem cell differentiation
	Tissue engineering, screening, drug development
	Basics are covered by the indicated literature (Lanza, Alberts, selected articles)
• • • • • • • • • • • • • • • • • • • •	provided on Moodle, including a self-test on Moodle.
Learning outcomes	After completing the module, students will be able to:
and competences	Critically assess tissue engineering (TE) strategies including bioprinting vis-a-vis clinical viability, industrial value
	• Identify current bottlenecks in TE in general and for drug development in particular
	explain differences between TE for regenerative medicine, academia and drug
	development
	 differentiate between 2D, ultraflat 3D and thicker 3D tissue constructs
	 develop concepts of industrial applications of TE depending on tissue type and question to be answered
	 delineate rationale for TE design to address questions in disease modelling and
	cosmetics
	 improve presentation technique and defend view points
Module contents	"Tiscue Engineering for Drug Discovery" is an advanced course for and wate students to
	rissue Engineering for Drug Discovery is an advanced course for graduate students to
	they can be barnessed for the generation of in vitro tissue models for drug and
	substance testing. In order to build a tissue its microarchitecture (histology) and its
	physiology must be understood. As a perfect tissue will not arise in vitro, a selection
	must be made as to which functional features of this particular tissue should be

A cooperation between BFH, FHNW, HES-SO, ZFH

	preserved to be testable and which are relevant for the drug or cosmetic substance to be tested. We will discuss this using skin and liver as an example. Skin is one of the oldest and most successful tissue engineering feats in both clinical and in vitro
	settings, yet full physiology has not been reached. Liver is a central organ relevant to pharmaco-toxicity but also fulfill a myriad of synthetic functions. Therefore, every tissue model needs to fulfill different needs for different purposes.
	The topics span stem cell as tools for tissue differentiation and as a focus for personalized medicine and the newest 3D approaches to generate living tissue models.
	This will set the stage for the group presentations that will tackle to build a suitable organ model and to emulate the necessary physiological functions. Selected organs and tissues are set for problem-based groups.
Teaching / learning	Lectures, self-study, company presentation
methods	 Team based learning (groups to extract information from the internet)
	 Interactive discussions, presentation clinic
	 Final group presentations (problem-based learning) with detailed-feedback on
	form and content
	 Overview of teaching hours (27 lectures by M. Raghunath, 6 by L. Suter-Dick, 6 by
	M. Rimann, 3 by guest speakers).
Assessment of	1. One group presentation on selected topics (3-4 students) (40%)
learning outcome	2. Final exam, closed book (60%)
Format	7-weeks
Timing of the	Spring semester CW 15-21
module	
Venue	Mix of online and on-site lectures (in Olten or Berne)
Bibliography	Pre course work
	"Molecular Biology of the Cell", Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter, 6 th edition, "Garland Science, Taylor & Francis, 2014, ISBN-13: 978-0815345244; Chapters 19 (Cell junctions and the extracellular matrix), 22 (Stem Cells and Tissue Renewal)
	"Principles of Tissue Engineering", Lanza, Langer & Vacanti, 4 th edition, 2014, Academic Press, Chapters 1-4 (Introduction to TE); Chapters 13-17 (In vitro Control of Tissue Development)
	 <u>Course Material (Moodle)</u> Chen C, Peng Y, Wang Z, Fish, P, Kaar J, Koepsel R, Russell A, Lareu R., Raghunath, M. 2009. The Scar-in-a-Jar: Studying antifibrotic lead compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol 158(5):1196-1209. Epub 2009 Sep 28. Chen CZC, Loe F, Blocki A, Peng Y, Raghunath M, 2011. Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 63(4-5):277-290.
	Further Material for problem-based learning presentation groups is posted on Moodle.
Language	English

Master in Life Sciences

Links to other	BP5 "Physiology and Immunotherapies"
modules	
Comments	
Last Update	20.09.2021