Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Progresses in Food Processing
Code	F1
Degree Programme	Master of Science in Life Sciences
Group	Food
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Prof. Dr. Michael Beyrer
Coordinator	Phone: +41 (0)27 606 85 23
	Email: michael.beyrer@hevs.ch
	Address: School of Engineering, Institute of Life Technologies, Rue de l'Industrie 19,
	1950 Sion
Lecturers	Prof. Dr. Michael Beyrer, HES-SO
	Prof. Dr. Laurence Nicolay, HES-SO
	Prof. Dr. Lydie Moreau, HES-SO
	Guest lecturers
Entry requirements	 Basic knowledge of thermal and mechanical food processing operations
	 Basic knowledge of heat and mass transport phenomena
	Knowledge of most characteristic modifications of food ingredients caused by the
	processing or preparation of food
	Basic knowledge in food microbiology
	Basic skills in chemical, microbiological and physical food analysis
Learning outcomes	After completing the module, students will be able to:
and competences	• Explain the purpose and the working principle of several emerging food processing
	technologies, as compared to "traditional" ones
	Use several food processing equipment
	Analyze several physical, microbiological and chemical characteristics of foods
	Evaluate and compare the impact of several technologies on the finished food
	product properties
Module contents	<u>Theoretical inputs - food processing techniques:</u>
	Iraditional and emerging technologies will be presented: principles, equipment design
	and way of working, impact of different technologies on finished food properties.
	Advantages, limits and technical readiness of such technologies will be introduced. The
	technologies cover all branches nom beverages, to bakery, meat and dairy products.
	Theoretical inputs regarding processing technologies will be spread throughout the
	module and illustrated with selected practical.
	Topic I - Shelf life extension of food by non-thermal technologies
	 Inoculation of a food (fruit juice for ex.) with a non-pathogen micro-organism
	Reduction of microbial count by heat, pulsed electric field and high-pressure
	processing: demonstration and application of different type of equipment such as
	plate, tube and scraped surface heat exchangers, PEF-unit, HPP machine, etc.
	Determination of the yield of inactivation of microorganisms
	Determination of variation of other characteristic product properties, such as
	color, antioxidant capacity, and viscosity as a function of thermal charge

	<u>Topic II – Vegan alternatives for meat and cheese products</u>
	Raw materials: Manufacturing protein concentrates or isolates and methods for
	characterization
	Technology for textured vegetable proteins
	Overview on technologies for structuring vegetable proteins at high moisture
	Principles of alignment and binding of vegetable proteins in industry-scale machinery
	machinery
	<u>Topic III – Twin screw extrusion</u>
	• Manufacturing of first-generation extruded products, such as directly expanded
	breakfast cereals
	Determination of physical and chemical properties as a function of processing
	parameters and composition
	Topic IV (optional) – Micro-encapsulation of flavors, phytochemicals and probiotics
	 Preparation of pre-mixes by high-pressure homogenization, ultra-sonication and/or stator-rotor machines
	 Coating, encapsulation and aggregation with fluidized bed technologies
	 Determination of typical physical powder properties: particle size, flow index,
	compressibility, water sorption-desorption isotherms, etc.
	Determination of the yield for the encapsulated substance
Teaching / learning	Blend of theoretical inputs, hands-on practical and self-study:
methods	Theoretical inputs (18% - 16h):
	Theory regarding several technologies' way of working, including those used during
	the practical, applications and limitations.
	• Advantages / disadvantages of emerging technologies versus more traditional ones
	<u>Practical (18% - 16h)</u>
	Practical activities in the pilot plant or laboratories
	<u>Self-study (64% - 58h)</u>
	 Pre-reading – 24h
	Report preparation: 20h
	Exam preparation: 12h
Assessment of	 Written exam: In Einal individual written test for theoretical inputs and self-study (closed book: 60%).
learning outcome	2. Group report for practical's assessment, to be handed in 3 weeks after the end of
	the module (40%)
Format	Winter School
Timing of the	Autumn semester, CW 4
module	20 participants maximum per session – CW5 as backup
	Day of the block week <1
	Contact teaching (lessons) 8 9 9 8 8 Self-study (hours) 24 2 2 2 2 2 2 2

A cooperation between BFH, FHNW, HES-SO, ZFH

Venue	Sion / Sitten and/or online
Bibliography	Recommended textbooks for pre-course work (information regarding relevant
	chapters will be provided on Moodle):
	Fellows PJ, 2016. Food Processing Technology. Woodhead Publishing, 4 th edition, 1152 pp.
	Singh RP, Heldman D, 2013. Introduction to Food Engineering. Academic Press, 5 th edition, 892 pp.
	Advanced course material:
	Sun DW, 2014. Emerging Technologies for Food Processing. Academic Press, 2nd edition, 666 pp.
Language	English
Links to other	This module will complete the food technology aspects of specialisation module FNH-3
modules	"Technology meets Nutrition" of BFH. The present module focuses on new
	technologies while the module FNH-3 covers the nutritional aspects linked to
	technologies
Comments	The module will be carried out twice if enrolments exceed 20 participants
Last Update	10.01.2021