Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Surface Characterisation
Code	C2
Degree Programme	Master of Science in Life Sciences
Group	Chemistry
Workload	3 ECTS (90 student working hours: 42 contact lessons = 32 h; 58 h self-study)
Module	Name: Dr. Michael de Wild
Coordinator	Phone : +41 (0)61 228 56 49
	Email: michael.dewild@fhnw.ch
	Address: FHNW, Hochschule für Life Sciences, Hofackerstrasse 30, 4132 Muttenz
Lecturers	Dr. Michael de Wild, FHNW
	M. Theodor Bühler, FHNW
	Dr. Patrick Shahgaldian, FHNW
Entry requirements	Scientific background in chemistry, physics and analytical chemistry.
	The students need a Bachelor in Materials Sciences, Chemistry, Physics, Engineering,
	Biomedical engineering or equivalent.
	Basic lectures on materials sciences, chemistry, physics and biomaterials are a
	prerequisite to follow this course.
Learning outcomes	After completing the module, students will be able to:
and competences	• explain in-depth modern microscopic and spectroscopic surface and nanomaterials
	characterization techniques.
	describe the importance of surface chemistry and the structural features of
	surfaces with regard to cell-surface interactions.
	describe the principal methods of sample preparation for analytical techniques
	required to accurately analyze the surface.
	• select the right combination of surface analytical techniques to proper analyze the
	surface properties of various materials.
	• explain the most recent sensing strategies and detection principles in Life Sciences.
	• critically evaluate the scope and limitations of the applied methods, the range of
	sensitivity and the influence of disturbing factors on the results.
	identify artefacts derived from the used methods.
Module contents	 Electron microscopy (EM), incl. cryogenic EM, EDX and WDX Analysis
	 Scanning tunneling and atomic force microscopy techniques
	Advanced confocal microscopy
	White light interference microscopy,
	Interpretation of microscopic and spectroscopic data
	 Measuring, perimeter, blob analysis, fractal analysis
	 Segmentation, particle counting
	(FT) infrared and Raman spectroscopy, incl. confocal Raman microscopy, tip
	enhanced Raman spectroscopy
	Surface ellipsometry (spectroscopic and imaging modes) and Brewster angle
	microscopy (BAM)
	 Interactions with surfaces (SPR, QCM, OWLS)
	TOF-SIMS techniques

A cooperation between BFH, FHNW, HES-SO, ZFH

	XPS and applications
	 Porosimetry: gravimetry, MIP, BET, μCT
	 Profilometry, 3D-SEM, confocal laser scanning microscope
	 Calometer, tribometer
	Dynamic contact angle measurement
	Non-destructive testing
Teaching / learning	Lecture and blended learning:
methods	Contact lessons
	Lectures, Q&A-sessions
	Group Exercises
	Individual Project Studies
	Demonstrations
	<u>Self-study</u>
	Learning videos
	• interactive simulations (<u>https://phet.colorado.edu/en/simulations/category/new</u>)
	Individual Project Studies
Assessment of	1. Final written exam, closed book, (100%)
learning outcome	
Format	7-weeks
Timing of the	Autumn semester, CW 45-51
module	
Venue	Olten and/or online
Bibliography	Pre-course
	The scripts for this module will be available on moodle timely before the module starts. Likewise, selected
	scientific articles and instructions for pre-work are announced on the moodle platform.
	Course material
	Oura K, Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. , Surface Science: An Introduction, ISBN 978-3-
	642-05606-2, Springer Verlag, Berlin Heidelberg, 2010.
	Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons, <i>Biomaterials Science. An</i> Introduction to Materials in Medicine: An Introduction to Materials in Medicine, 2004.
	introduction to Materials in Medicine. An introduction to Materials in Medicine, 2004.
	Interactive simulations (<u>https://phet.colorado.edu/en/simulations/category/new</u>)
	Selected recent scientific articles
Language	English
Links to other	Collaboration with modules C3 "Polymers and Applications" and C1 "Materials
modules	Science".
	Specialisation modules FHNW: "Biointerface Engineering", "Medical Device
	Development", "Implant Design and Manufacturing".
Comments	
Last Update	31.03.2021