Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Drug Formulation and Delivery for Solid Dosage Forms
Code	BP2
Degree Programme	Master of Science in Life Sciences
Group	Bio/Pharma
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Dr. Georgios Imanidis
Coordinator	Phone: +41 (0)61 228 56 36
	Email: georgios.imanidis@fhnw.ch
	Address: School of Life Sciences - FHNW, Institute of Pharma Technology,
	Gründenstrasse 40, 4132 Muttenz
Lecturers	Dr. G. Imanidis, School of Life Sciences - FHNW
	Dr. M. Kuentz, School of Life Sciences - FHNW
	Dr. T. Guentert, Private consultant (ex. Roche), Böckten
Entry requirements	Bachelor's Degree in Life Sciences (or equivalent) in Pharma Technology, Chemistry,
	Process Technology, or Food Technology.
	Preparation of the topic "basic pharmacokinetics" is essential, including the self-test on
	Moodle. In addition, study of relevant literature.
Learning outcomes	After completing this module, students:
and competences	know the formulation strategies for poorly water-soluble active pharmaceutical
	ingredients,
	 know formulation concepts of solid dosage forms for per-oral drug delivery,
	understand the principles and mechanisms of controlled drug release and delivery,
	can evaluate the blood plasma concentration profiles and therapeutic effects of
	controlled drug delivery based on pharmacokinetic principles,
	• can develop pharmaceutical dosage forms (after acquiring relevant practical
	experience),
	are able to work in interdisciplinary teams of drug development.
Module contents	Controlled release technologies:
	Fundamentals of controlled release and examples
	thereof; theory of drug diffusion, kinetics, crystals, particles, membrane & matrix systems, hydrogels, lipogels, multi-phasic, swellable, erodable, biodegradable,
	monolithic/particulate, micro-/nano-particulate, osmotic, stimuli responsive systems,
	devices, pumps, eluting stents.
	Per-oral drug delivery and formulations of poorly water-soluble drugs:
	Intestinal absorption, models, theory of solubility, principles of solubilization, the
	requirement for the active ingredient and formulation technologies including lipid-
	based, solid dispersion and particulate systems.
	Biopharmaceutical modeling and simulation:
	Basic principles and application of LADME in time-controlled delivery; physiological
	transport, pharmacokinetic models, compartmental and physiologically based
	modeling, pharmacokinetic profile for different drug delivery kinetics, data analysis
	exercises.
	1

A cooperation between BFH, FHNW, HES-SO, ZFH

Teaching / learning methods	Lecture, theoretical workshop, literature search, computer modelling exercises
Assessment of	1. Written final examination, closed book (100%)
learning outcome	
Format	7-weeks
Timing of the	Autumn semester, CW 45-51
module	
Venue	Olten and/or online
Bibliography	 D.L. Wise: Handbook of Pharmaceutical Controlled Release Technology M.J. Rathbone, J. Hadgraft, M.S. Roberts, M.E. Lane: Modified-Release Drug Delivery Technology, Volume 1 & 2 M. Grassi et al.: Understanding drug release and absorption mechanisms M. Rowland & T.N. Tozer: Clinical pharmacokinetics - concepts and applications S.A. Peters: Physiologically based pharmacokinetic (PBPK) modeling and simulations - principles, methods, and applications in the pharmaceutical industry
Language	English
Links to other	Specialisation module FHNW "Formulation of biologics and routes of drug delivery"
modules	
Comments	The homework assignments can be used to round up the grade in the respective part
	of the exam.
Last Update	31.03.2021