Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Modelling of Complex Systems
Code	BECS1
Degree Programme	Master of Science in Life Sciences
Group	BECS (Biomedical Engineering and Computational Science)
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Prof. Dr. Sven Hirsch
Coordinator	Phone : +41 (0)58 934 54 44
	Email: sven.hirsch@zhaw.ch
	Address: ZHAW Life Sciences und Facility Management, Schloss 1, 8820 Wädenswil
Lecturers	Prof. Dr. Sven Hirsch, ZHAW
	Dr. Simone Ulzega, ZHAW
	guest lecturers
Entry requirements	 Students should have basic statistics experience at the bachelor level, including: descriptive statistics, correlation measures, probability distributions such as normal and binomial distribution, basics of probability theory. Students should know fundamentals of ordinary differential equations as taught at
	 Students will have to complete an entry self-test (Moodle) in advance of the module. Preparatory material is provided on the Moodle platform
	• Students will have to install a systems dynamics software and get acquainted with the software prior to the course (details will be provided on Moodle)
Learning outcomes	After completing the module students will be able to:
and competences	describe different aspects of system theory and assess where and how system
	theory is applied to real-world problems;
	• use a mathematical tool (Vensim) to model and simulate a dynamical system;
	derive a system formulation from ordinary differential equations (e.g. chemical
	reaction);
	perform parametric studies with the Monte-Carlo method and apply optimization
	techniques to fit model predictions to experimental findings;
	 model, analyze, justify and communicate a system autonomously.
Module contents	The course introduces basic mathematical tools and software used for the modeling
	and analysis of real-world systems in the context of life sciences. The following
	contents are taught in this course:
	Introduction into system theory / system dynamics
	- What is a complex system? What is its purpose?
	 Overview and characterization of various systems (static/dynamical systems, discrete and continuous systems)
	 discrete and continuous systems) Introduction to mathematical models used for the modeling and analysis of
	systems, including differential equations.
	 Properties of linear, non-linear and chaotic systems
	 Qualitative methods for analyzing system models (graphs, feedbacks, active-
	passive Matrix, Vester's paper computer)
	 Introduction into tools and methods used for system analysis and modeling
	 Basic modeling using software tools (e.g. Vensim, Excel)

modules	Modelling" and BECS4 "Optimisation Methods"
Links to other	The concepts will handshake with the specialisation module ZHAW "Mathematical
Language	English
	Important literature and lecture notes will be provided on Moodle
	R. L. Flood, E. R. Carson, Dealing with Complexity: An Introduction to the Theory and Application of Systems Science, Springer, 1993 <u>http://en.wikipedia.org/wiki/Systems_thinking</u> D. Aronson, Overview of Systems Thinking, <u>http://www.thinking.net/Systems_Thinking/OverviewSTarticle.pdf</u> K. North, An Introduction to Systems Thinking, <u>http://courses.umass.edu/plnt597s/KarlsArticle.pdf</u>
2.2	H. Bossel, Systems and Models, 2007, ISBN 978-3-8334-8121-5
Venue Bibliography	Olten and/or online Course Book
module	
Timing of the	Autumn semester, CW 38-44
Format	 A report will be delivered one week after the end of the module (100%) 7-weeks
	The project will be finalized and documented after the module.
learning outcome	individual projects will be conceived and developed during the course (during the course two individual presentations are given by the student).
Assessment of	and will have time to work on the project in class under supervision. The students will develop an own model as a case study (practical study). The
Teaching / learning methods	The course will be taught in short frontal sessions and by practical implementation sessions. The students will conceive and develop an own case study in a group work
	 Monte-Carlo simulation to perform parametric sensitivity studies Detailed case studies of systems and their modeling with examples from biomechanics, environmental sciences, biology, chemistry, industrial processes, and economics, e.g. plant dynamics, bacterial population behavior, drug reactions, or buyer/seller market dynamics Practical communication and documentation of a model and of simulation results argumentation and motivation of a model logic visualization of the model structure and its behavior formulation of hypothesis and testing by means of simulation
	 Control structures, Look-ups, data sampling, functions Analysis of equilibrium and stationary states Numerical integration methods Introduction to stability analysis and convergence testing Level of validity and detection of simulation-inherent errors Advanced system dynamics techniques Parameter optimization for fitting model behavior to experimental data
	 Analysis of equilibrium and stationary states

Comments	
Last Update	26.03.2020